图片: | |
---|---|
名称: | |
描述: | |
人工智能对简化医生工作流程的影响也许更直接明显。智能搜索引擎等一般人工智能的能力可以帮助找出必要的病人数据,而联想输入或语音听写等其他技术,可以减轻获取医疗数据的繁琐过程,而医生在日常工作中已经在使用这些技术了。
我们不应该低估这种特殊的影响。医生们忙于文书工作,这占用了他们与病人相处的宝贵时间。对当前的医生队伍进行人工智能技术教育,以提高效率和改善工作流程,可以降低职业倦怠率。更重要的是,这些数据可以反过来反馈训练机器学习模型,进一步优化病人护理,形成良性循环。
人工智能还掌握着将医疗扩展到医院之外的关键。例如,未来的应用程序可以让患者拍下皮疹的照片,从而在网上获得诊断,而不用急着去急诊。自动分诊可以有效地将病人送到适当医生那里,获得适当的护理。机器学习也许是人工智能辅助医疗的最大希望,在 “看到” 数十亿病人之后,机器学习可以让医生有能力做出更好的决策。
但是,如果没有数据支持,这个特定的场景就只能是纸上谈兵。现在的关键是开发正式的方法来测试这些想法,同时不伤害医生或患者。
过分夸大人工智能对医疗保健的影响并不是最好的进步方法。
临床医生和患者采用这些系统需要了解他们的最佳使用限制。任何一方都不应该过分依赖机器诊断,即使它变得习以为常。
最后,机器学习并没有从医生那里拿走任何东西。相反,医生的感性、敏感和对生命的欣赏永远不会消失。人工智能只是对此进行补充。
“这不是机器和人类一较高下的问题,而是利用人工智能优化人类医生和病人护理的问题,”Kohane 博士表示。